Stability and Bifurcation Analysis of Volterra Functional Equations in the Light of Suns and Stars
نویسندگان
چکیده
We show that the perturbation theory for dual semigroups (sun-star-calculus) that has proved useful for analyzing delay-differential equations is equally efficient for dealing with Volterra functional equations. In particular, we obtain both the stability and instability parts of the principle of linearized stability and the Hopf bifurcation theorem. Our results apply to situations in which the instability part has not been proved before. In applications to general physiologically structured populations even the stability part is new.
منابع مشابه
Discretization of a fractional order ratio-dependent functional response predator-prey model, bifurcation and chaos
This paper deals with a ratio-dependent functional response predator-prey model with a fractional order derivative. The ratio-dependent models are very interesting, since they expose neither the paradox of enrichment nor the biological control paradox. We study the local stability of equilibria of the original system and its discretized counterpart. We show that the discretized system, which is...
متن کاملFuzzy difference equations of Volterra type
In this work we introduce the notion of fuzzy volterra dierence equations and study the dynamicalproperties of some classes of this type of equations. We prove some comparison theorems for theseequations in terms of ordinary volterra dierence equations. Using these results the stability of thefuzzy nonlinear volterra dierence equations is investigated.
متن کاملStability analysis of a fractional order prey-predator system with nonmonotonic functional response
In this paper, we introduce fractional order of a planar fractional prey-predator system with a nonmonotonic functional response and anti-predator behaviour such that the adult preys can attack vulnerable predators. We analyze the existence and stability of all possible equilibria. Numerical simulations reveal that anti-predator behaviour not only makes the coexistence of the prey and predator ...
متن کاملA Generalization of the Meir-Keeler Condensing Operators and its Application to Solvability of a System of Nonlinear Functional Integral Equations of Volterra Type
In this paper, we generalize the Meir-Keeler condensing operators via a concept of the class of operators $ O (f;.)$, that was given by Altun and Turkoglu [4], and apply this extension to obtain some tripled fixed point theorems. As an application of this extension, we analyze the existence of solution for a system of nonlinear functional integral equations of Volterra type. Finally, we p...
متن کاملVehicle Directional Stability Control Using Bifurcation Analysis of Yaw Rate Equilibrium
In this article, vehicle cornering stability and brake stabilization via bifurcation analysis has been investigated. In order to extract the governing equations of motion, a nonlinear four-wheeled vehicle model with two degrees of freedom has been developed. Using the continuation software package MatCont a stability analysis based on phase plane analysis and bifurcation of equilibrium is perfo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Math. Analysis
دوره 39 شماره
صفحات -
تاریخ انتشار 2007